(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(x), s(y)) →+ minus(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, quot, app, reverse, shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
minus < quot
app < reverse
reverse < shuffle
concat < less_leaves

(8) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
minus, quot, app, reverse, shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
minus < quot
app < reverse
reverse < shuffle
concat < less_leaves

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

Induction Base:
minus(gen_0':s6_0(0), gen_0':s6_0(0)) →RΩ(1)
gen_0':s6_0(0)

Induction Step:
minus(gen_0':s6_0(+(n10_0, 1)), gen_0':s6_0(+(n10_0, 1))) →RΩ(1)
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) →IH
gen_0':s6_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
quot, app, reverse, shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
app < reverse
reverse < shuffle
concat < less_leaves

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol quot.

(13) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
app, reverse, shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
app < reverse
reverse < shuffle
concat < less_leaves

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)

Induction Base:
app(gen_nil:add7_0(0), gen_nil:add7_0(b)) →RΩ(1)
gen_nil:add7_0(b)

Induction Step:
app(gen_nil:add7_0(+(n485_0, 1)), gen_nil:add7_0(b)) →RΩ(1)
add(hole_a3_0, app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b))) →IH
add(hole_a3_0, gen_nil:add7_0(+(b, c486_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(15) Complex Obligation (BEST)

(16) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
reverse, shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
reverse < shuffle
concat < less_leaves

(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)

Induction Base:
reverse(gen_nil:add7_0(0)) →RΩ(1)
nil

Induction Step:
reverse(gen_nil:add7_0(+(n1422_0, 1))) →RΩ(1)
app(reverse(gen_nil:add7_0(n1422_0)), add(hole_a3_0, nil)) →IH
app(gen_nil:add7_0(c1423_0), add(hole_a3_0, nil)) →LΩ(1 + n14220)
gen_nil:add7_0(+(n1422_0, +(0, 1)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(18) Complex Obligation (BEST)

(19) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
shuffle, concat, less_leaves

They will be analysed ascendingly in the following order:
concat < less_leaves

(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

Induction Base:
shuffle(gen_nil:add7_0(0)) →RΩ(1)
nil

Induction Step:
shuffle(gen_nil:add7_0(+(n1722_0, 1))) →RΩ(1)
add(hole_a3_0, shuffle(reverse(gen_nil:add7_0(n1722_0)))) →LΩ(1 + n17220 + n172202)
add(hole_a3_0, shuffle(gen_nil:add7_0(n1722_0))) →IH
add(hole_a3_0, gen_nil:add7_0(c1723_0))

We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).

(21) Complex Obligation (BEST)

(22) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
concat, less_leaves

They will be analysed ascendingly in the following order:
concat < less_leaves

(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b)) → gen_leaf:cons8_0(+(n1933_0, b)), rt ∈ Ω(1 + n19330)

Induction Base:
concat(gen_leaf:cons8_0(0), gen_leaf:cons8_0(b)) →RΩ(1)
gen_leaf:cons8_0(b)

Induction Step:
concat(gen_leaf:cons8_0(+(n1933_0, 1)), gen_leaf:cons8_0(b)) →RΩ(1)
cons(leaf, concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b))) →IH
cons(leaf, gen_leaf:cons8_0(+(b, c1934_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(24) Complex Obligation (BEST)

(25) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)
concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b)) → gen_leaf:cons8_0(+(n1933_0, b)), rt ∈ Ω(1 + n19330)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

The following defined symbols remain to be analysed:
less_leaves

(26) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
less_leaves(gen_leaf:cons8_0(n3024_0), gen_leaf:cons8_0(n3024_0)) → false, rt ∈ Ω(1 + n30240)

Induction Base:
less_leaves(gen_leaf:cons8_0(0), gen_leaf:cons8_0(0)) →RΩ(1)
false

Induction Step:
less_leaves(gen_leaf:cons8_0(+(n3024_0, 1)), gen_leaf:cons8_0(+(n3024_0, 1))) →RΩ(1)
less_leaves(concat(leaf, gen_leaf:cons8_0(n3024_0)), concat(leaf, gen_leaf:cons8_0(n3024_0))) →LΩ(1)
less_leaves(gen_leaf:cons8_0(+(0, n3024_0)), concat(leaf, gen_leaf:cons8_0(n3024_0))) →LΩ(1)
less_leaves(gen_leaf:cons8_0(n3024_0), gen_leaf:cons8_0(+(0, n3024_0))) →IH
false

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(27) Complex Obligation (BEST)

(28) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)
concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b)) → gen_leaf:cons8_0(+(n1933_0, b)), rt ∈ Ω(1 + n19330)
less_leaves(gen_leaf:cons8_0(n3024_0), gen_leaf:cons8_0(n3024_0)) → false, rt ∈ Ω(1 + n30240)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

(30) BOUNDS(n^3, INF)

(31) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)
concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b)) → gen_leaf:cons8_0(+(n1933_0, b)), rt ∈ Ω(1 + n19330)
less_leaves(gen_leaf:cons8_0(n3024_0), gen_leaf:cons8_0(n3024_0)) → false, rt ∈ Ω(1 + n30240)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(32) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

(33) BOUNDS(n^3, INF)

(34) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)
concat(gen_leaf:cons8_0(n1933_0), gen_leaf:cons8_0(b)) → gen_leaf:cons8_0(+(n1933_0, b)), rt ∈ Ω(1 + n19330)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(35) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

(36) BOUNDS(n^3, INF)

(37) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(38) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add7_0(n1722_0)) → gen_nil:add7_0(n1722_0), rt ∈ Ω(1 + n17220 + n172202 + n172203)

(39) BOUNDS(n^3, INF)

(40) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(41) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
reverse(gen_nil:add7_0(n1422_0)) → gen_nil:add7_0(n1422_0), rt ∈ Ω(1 + n14220 + n142202)

(42) BOUNDS(n^2, INF)

(43) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)
app(gen_nil:add7_0(n485_0), gen_nil:add7_0(b)) → gen_nil:add7_0(+(n485_0, b)), rt ∈ Ω(1 + n4850)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(44) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

(45) BOUNDS(n^1, INF)

(46) Obligation:

TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: a → nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_a3_0 :: a
hole_leaf:cons4_0 :: leaf:cons
hole_false:true5_0 :: false:true
gen_0':s6_0 :: Nat → 0':s
gen_nil:add7_0 :: Nat → nil:add
gen_leaf:cons8_0 :: Nat → leaf:cons

Lemmas:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

Generator Equations:
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
gen_nil:add7_0(0) ⇔ nil
gen_nil:add7_0(+(x, 1)) ⇔ add(hole_a3_0, gen_nil:add7_0(x))
gen_leaf:cons8_0(0) ⇔ leaf
gen_leaf:cons8_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons8_0(x))

No more defined symbols left to analyse.

(47) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s6_0(n10_0), gen_0':s6_0(n10_0)) → gen_0':s6_0(0), rt ∈ Ω(1 + n100)

(48) BOUNDS(n^1, INF)